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LE’ITER TO THE EDITOR 

A quantum Hamiltonian approach to the two-dimensional 
axial next-nearest-neighbour Ising model 

Michael N Barber? and Phillip M Duxbury $ 
t Department of Applied Mathematics, University of New South Wales, PO Box 1, 
Kensington, NSW 2033, Australia 

School of Physics, University of New South Wales, PO Box 1, Kensington, NSW 2033, 
Australia 

Received 2 April 1981 

Abstract. A quantum Hamiltonian analogue of the two-dimensional axial next-nearest- 
neighbour Ising (ANNNI) model is presented. The phase diagram is investigated by the 
analysis of perturbation series and by finite-lattice methods. 

Systems exhibiting spatially modulated phases are currently of considerable interest. 
(For a recent review see Villain (1980)). The simplest non-trivial model to exhibit such 
phases is the so-called ANNNI or axial next-nearest-neighbour Ising model (Hornreich et 
a1 1978, Selke and Fisher 1980, Villain and Bak 1981, and references cited in these 
papers), In two dimensions, this model i s  specified by the Hamiltonian 

= - c (JlSi,jSi+l,j -Jzsi,isi+z,i +Josj,isi,i+l), 
( i i )  

where the spins Sii (= *l) populate the sites of a square lattice. All coupling constants 
Ji, i = 0, 1 ,2 ,  are positive so that the nearest-neighbour interactions are ferromagnetic 
but the axial next-nearest-neighbour interaction in the x direction is antiferromagnetic. 

In this Letter, we summarise a detailed investigation of the phase diagram of the 
ANNNI model based on the associated quantum Hamiltonian field theoryt. Specifically, 
we have considered the (1 + 1)-dimensional quantum Hamiltonian 

Here the index m labels the sites of a linear chain and the rm are Pauli spin matrices. 
Following Fradkin and Susskind (1978), (2) can be related to the transfer matrix of (1) in 
the y direction in the limit Jo + CO, J1, J z  + 0 with 

A = PJ1 exp(2PJ0), A ’  = PJz exp(2PJ0), (3) 

finite. The ground state energy of (2) corresponds to the free energy of (1) (see e.g. 
Kogut 1979). The natural parameters in which to discuss the ground state properties 
are A (corresponding to the temperature: A a 1/T) and the ratio K = A ’ / A  = J z / J 1 .  

The ground state of (2) can be determined analytically in four limits. 

t This limit has also been considered recently by Rujan (1981), who however did not develop systematic 
perturbation expansions. 

0305-4470/81/070251+05$01.50 @ 1981 The Institute of Physics L251 



L252 Letter to the  Editor 

(i) A +cc (i.e. T -* 0) ,  K fixed 
In this limit, we may choose a basis in which all a', are diagonal. For 0 G K < 3, the 
ground state is doubly degenerate, the two states being distinguished by the order 
parameter rF = (a',). For K > 1, the ground state is fourfold degenerate and consists'of 
alternating parrs of up (a; = +1) and down (a', = -1) spins. An appropriate order 
parameter is rA = $(a', + CT',+I - u',+z - a' ,+3).  This phase corresponds to the (2 - 2) 
anti-phase of (1). For K = 1, the ground state is highly degenerate: any spin configura- 
tion is a ground state provided that either a', = u',+I or a; = a',-l for all m. 

In this case the ground state is non-degenerate and such that a; = 1, all m. Alter- 
natively, the state can be characterised as the ferromagnetically ordered state of the dual 
Hamiltonian 

(ii) A = A ' = O  (i.e. T+m)  

HD = -E [F  ',F ',+I + A (P - KP ;P % + I  11, 
m 

which follows from (2) by the dual transform (Fradkin and Susskind 1978) 
z z  PL",  ama am+^, p ; =  n a",, 

m'<m 

(4) 

( 5 )  

where the dual spins are defined on the bonds of the original chain. The order 
parameter rD = ( p i )  of (4) is then a disorder parameter characterising the disordered 
(high-temperature) phase of (2). 

The other soluble limits of (2) are less trivial and exhibit phase transitions. They are 
as follows. 

(iii) K =0,  OGA 
In this case both (2) and (4) reduce to the transverse Ising model. 

(iv) K + 00, A +CO, A K  = A '  finite 
Here (2) decouples into two transverse Ising models and (4) reduces to the X Y  chain. 
Thus from known results (Pfeuty 1970, McCoy 1968) 

rF(h, A ' = 0 )  = ( 1 - 1 / A  ' ) ' I8,  rD(h,A ' = 0 )  = ( 1 - 2)1'8, (6) 

(7)  
and 

rD(h = 0,  A ' )  = (1 -A'2)1/4,  '2 1/8  rA(A = 0, A ' )  =(1- l / A  ) , 
which identify the points A = 1, A '  = 0 and A = 0, A '  = 1 as conventional critical points. 

To explore the phase diagram away from these soluble points, we have generated 
Raleigh-Schrodinger perturbation expansions (Hamer et a1 1979, Kogut 1979) about 
the trivial limits (i) and (ii). The actual series generated were the following. 

(a) Weak-coupling, O ~ K  <,+: ground state energy to order 12 in 1/A2, ferro- 
magnetic order parameter rF to order 12 in l/A2, and kink mass (weak-coupling mass 
gap) to order 11 in 1 / A .  

(b) Weak-coupling, K >;: ground state energy to order 7 in l / A 2  and anti-phase 
order parameter ra to order 7 in l / A 2 .  

(c) Strong-coupling, all K :  ground state energy to order 13 in A and disorder 
parameter FD to order 13 in A. 

'These series were analysed by standard methods, with phase boundaries being 
located by the ratio method and the poles of appropriate Pad6 approximants. This 
diagram is depicted in figure 1. 

To supplement the strong-coupling perturbation expansions, we have also carried 
out finite-lattice calculations for lattices up to M = 14 sites with periodic boundary 
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K 

Figure 1. Phase diagram of the quantum Hamiltonian analogue of the ANNNI model. The 
error bars indicate the spread of the estimates from strong- and weak-coupling series 
expansions and finite-lattice calculations. The ‘Lifshitzpoints’ are located at K = 0.35 * 0.1, 
A =2.7*0.1  and^ = l.l*O.l,A = 1.3*0.1. Thechaincurveisthespeciallinealongwhich 
Peschel has shown that the model is massive. 

conditions. The strong-coupling phase boundary was then determined by finite-size 
scaling of the mass gap (Hamer and Barber 1980). Some care has to be taken in 
choosing the appropriate lattice sizes to scale, since for K > 0.35, the first excited state 
no longer lies in the k = 0 (zero momentum) sector. As a rssult, we have been unable to 
obtain any data to apply finite-size scaling for 0.35 < K < 0.5 and only limited data for 
K > 0.5. On the other hand, it, is tempting to interpret the k-sector variation as 
heralding the eventual onset of a modulated phase. Since on a finite lattice of M sites 
the only possible wavevectors are integral multiples of 27r/M, we do not find a 
continuous variation in the k sector as K increases from 0.35. Instead, the k sector 
containing the first excited state jumps discontinuously, the number of jumps increasing 
as M increases. For K > 1.1, the first excited state always lies in the k = M/4 sector, 
consistent with a direct transition to the anti-phase state. 

Let us now summarise the actual evidence for figure 1, together with our conclusions 
regarding the natures of the various transitions. This is most conveniently done as a 
function of K .  

Here a single Ising-like transition is expected (Hornreich et a1 1978, Selke and Fisher 
1980). This expectation’h confirmed: the disorder parameter, ferromagnetic order 
parameter and kink mass all vanishing algebraically with exponents of Q, Q and 1 
respectively. 

The weak-coupling boundary is accurately determined by the kink mass which 
continues to vanish linearly for all 0 6 K < 0.5. On the other hand, Pad6 approximants 

(i) O s ~ c 0 . 3 5  

(ii) 0.35 s K < 0.5 
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to d(lg rF)/d(A -’), which are consistent for K C 0.35, become very inconsistent. Pad6 
approximants to the logarithmic derivative of d(lg rF)/d(A -’) are better behaved, 
exhibiting a pole in agreement with the kink-mass series. Taken at face value, this 
implies thatTF-exp{-a/[l - A : ( K ) / ~ ‘ ] ~ ]  with CT -0.5-1.0. In the same regime, the 
‘specific heat’ (second derivative of the ground state energy with respect to A -I) appears 
to diverge rather strongly; the precise nature of the singularity is as yet unclear. 

On the strong-coupling side, there is weak evidence from PadC analysis of the 
disorder parameter series for a strong-coupling boundary (shown dotted in figure 1) 
distinct from the weak-coupling boundary. Unfortunately, as noted above, it appears 
difficult to use finite-lattice methods in this regime. 

Here the evidence for two transitions is considerably stronger than for 0.35 S K < 0.5. 
Not only is the Pad6 analysis of the disorder parameter series more consistent, but these 
estimates are confirmed to within a few per cent by finite-size scaling of the mass gap. 
We are unable, however, to determine with any confidence how the disorder parameter 
vanishes at the strong-coupling boundary. Plots of the scaled finite-lattice mass gaps 
show some similarity to those obtained for the O(2) model (Hamer and Barber 1981, 
Roomany and Wyld 1980). This suggests that the transition is to a massless phase, in 
accord with an argument (Garel and Pfeuty 1976) that the transition is XY-like. 
However, our data are insufficient to allow a detailed analysis. 

On the weak-coupling side, ratio analysis of the Fa series indicates a singularity at a 
larger value of A than the strong-coupling boundary. Pad6 approximants are however 
very defective and the series too short to determine reliably the nature of the 
singularity. PadC approximants to r A  itself, when evaluated on the weak-coupling 
boundary, yield a rather consistent non-zero value. This could indicate that the 
transition is first-order. 

Here the singularities in rD and rA agree to within the indicated precision and are 
supported by the finite-lattice results. The series analysis suggests that rD(h ,  K )  - 
[l - A / A c ( ~ ) ] 1 ’ 4 ,  in accord with (7), which holds at K =CO. Again the series for TA is too 
short and its Pad& too defective to determine reliably how F A  vanishes. 

We conclude by briefly comparing our results with other recent work. The phase 
diagram, figure 1, has the same general topology as that found in Monte Carlo 
calculations (Selke and Fisher 1980). These were, however, restricted to K d 0.8 and 
assumed isotropic nearest-neighbour intersections (Jo = J I ) ,  whereas our approach 
pertains to the extreme anisotropic limit (3). Rather significantly, both our results, the 
Monte Carlo calculations and the high-temperature susceptibility series (Redner, 
unpublished), indicate that something very definitely occurs at K - 0.35. This could 
conceivably be consistent with a Lifshitz point. On the other hand, Villain and Bak 
(1981) and Coopersmith et a1 (1981) have argued that the ferromsgnetic and floating 
phases do not co-exist but are always separated by a paramagnetic phase. In addition, 
Peschel and Emery (1981) have found a particular line along which the ground state 
energy and the correlation length can be determined exactly, the correlation Iength 
being everywhere finite. This line is shown in figure 1 and would appear to rule out a 
massless phase for K <& Our evidence for the transition in this region is very weak, yet 
the highly anomalous behaviour in rF and the specific heat demands theoretical 
explanation. We know of no such explanation. 

For K > 4, our results rather more strongly support the existence of a floating phase 
terminated by an upper Lifshitz point at a finite value of K .  Unfortunately, the nature of 

(iii) 0.5 s K d 1.1 

(iv) K 31.1 
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transitions in this regime remains unclear. Further theoretical as well as numerical 
calculations are desirable to resolve these questions. 

We thank Drs I Peschel and S Redner and Professor J Oitmaa for useful discussions. 
One of us (PMD) is grateful to the Australian Departmen't of Education for the award of 
a Commonwealth Postgraduate Scholarship. 
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